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57 ABSTRACT

In a search system, document terms are weighted as a func-
tion of prevalence in a data set, the documents are scored as a
function of prevalence and weight of the document terms
contained therein, and then independently, the documents are
ranked for a given search as a function of (a) their correspond-
ing document scores and (b) the closeness of the search terms
and the document terms. The steps can all be accomplished
using matrices. Subsets of the documents can be identified
with various collections, and each of the collections can be
assigned a matrix signature. The signatures can then be com-
pared against terms in the search query to determine which of
the subsets would be most useful for a given search.
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DOUBLY RANKED INFORMATION
RETRIEVAL AND AREA SEARCH

[0001] This application claims priority to U.S. provisional
application Ser. No. 60/688,987, filed Jun. 8, 2005.

[0002] This invention was made with Government support
under Grant Nos. DABT63-84-C-0080 and DABT63-84-C-
0055 awarded by the DARPA. The Government has certain
rights in this invention.

[0003] A portion of the material in this patent document is
subject to copyright protection under the copyright laws of
the United States and of other countries. The owner of the
copyright rights has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the United State Patent and Trademark
Office publicly available file or records, but otherwise
reserves all copyright rights whatsoever. The copyright owner
does not hereby waive any of its rights to have this patent
document maintained in secrecy, including without limitation
its rights pursuant to 37 CFR. § 1.14.

[0004] The provisional application, and all other materials
cited herein, are incorporated by reference in their entirety.
FIELD OF THE INVENTION
[0005] The field of the invention is electronic searching of
information.
BACKGROUND
[0006] Prior art Information Retrieval (IR) tools are rela-

tively good at providing useful results to three classes of
queries: (1) broad but “shallow” search; (2) “narrow and
accurate” searches; and (3) searches for “what others are
talking about”. They are not very good at responding to “topi-
cal searches”.

[0007] “Broad but shallow searches” typically return result
sets with many matching pages, and ranking them is not
terribly important. For example, with queries such as “travel”
or “flowers”, a user usually is asking “where do I get travel
information” or “where do I order flowers.” Many web pages
are designed to be matched with such queries. Once these
pages are returned by a Web search engine, the user reads
these pages and his information need is satisfied.

[0008] With current Web search, matching is done by exact
matching of words and proximity search. Since only words
are known to Web search, typically the matching is so “exact”
that not even stemming is used, e.g. “flowers” and “flower”
return different results. Because the position of each word in
the document is known, proximity search is also possible.
(Proximity search assigns a score depending on order and
distance of the matching between query words and document
words.) Typically statistical information of words in docu-
ments is not used. Web search is not aware of phrases but only
words, although phrases in a user query does match up with
those in a document, but this is an artifact of exact matching
and proximity search.

[0009] “Narrow and accurate” searches typically trigger
result sets with relatively few pages. Queries with persons’
names or product models’ names usually are of this type of
search. From the search engine’s point of view, whether those
pages containing the query words are in the database at all
determines whether the information need can be satisfied.
The main service the search engine provides therefore is
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being able to haul in as many pages on the Web possible. In
Web search jargon, to perform well with such queries is to “do
well at the tail”.

[0010] Searches for “what others are talking about” are
poorly addressed by Web page searches, because the pages
are usually replete with consumer product contains claims,
boasts and blurbs, and almost never contain critical com-
ments. So if one’s search task is to find out what others are
talking about the product, the page is not a good place to look.
Nevertheless, Web search engines have a great potential of
serving such search tasks very well, since they have access to
a relatively complete collection of the entirety of the web by
striving to crawl every (non-spam) Web page.

[0011] Inconducting this type of search, the main approach
by current Web search engines is to use the “anchor text”.
Anchor text is the words or sentences surrounded by the
HTML hyperlink tags, so it could be seen as annotations for
the hyperlinked URL. By collecting all anchor text for a given
URL, a Web search engine gets to know what other Web pages
are “talking about” the given URL. For example, many web
pages have the anchor text “search engine” for http://www.
yahoo.com; therefore, given the query “search engine”, a
search engine might well return http://www.yahoo.com as a
top result, although the text on the Web page http://www.
yahoo.com itself does not have the phrase “search engine” at
all.

[0012] “Topical searching” is an area in which the current
search engines do a very poor job. Topical searching involves
collecting relevant documents on a given topic and finding out
what this collection “is about™ as a whole. When engaged in
topical research, a user conducts a multi-cycled search: a
query is formed and submitted to a search engine, the returned
results are read, and “good” keywords and keyphrases are
identified and used in the next cycle of search. Both relevant
documents and keywords are accumulated until the informa-
tion need is satisfied, concluding a topical research. The end
product of a topical research is thus a (ranked) collection of
documents as well as a list of “good” keywords and key
phrases seen as relevant to the topic.

[0013] Prior art search engines are inadequate for topical
searching for several reasons. First, there is the issue with
respect to exact matching; it is sometimes difficult to formu-
late queries because the search engine considers only exact
matches, or stemming matches. Second, the effectiveness of
anchor texts is problematic in at least the following two ways:
(a) hyperlinks are many times simply not created by the
author who is writing about a particular Web site or Web page;
(b) meaningless but often used “anchor text stop-words™ such
as “click here, more info” simply do not help. Third, in the
prior art search engines the terms (keywords and keyphrases)
are not scored. Search engines aim at getting documents;
therefore, there is no need to score keywords and key phrases.
However for topical research, the relative importance of indi-
vidual keywords and phrases matters a great deal. Fourth,
where link analysis is used, the documents’ scores are derived
from global link analysis, and are therefore not useful for
most specific topics. For example, web sites of all “famous™
Internet companies have high scores, however, a topical
research on “Internet” typically is not interested in such web
sites whose high scores get in the way of finding relevant
documents.

[0014] The inadequacy of the current approaches with
respect to topic searching cannot readily be remedied by
cleverness on the part of the searcher. For example, consider
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the case of a researcher (user) secking an overview of the
journal IEEE Transactions on Software Engineering during a
paper research. The user could start by submitting the query
“+publication:‘IEEE Transactions on Software Engineer-
ing’” to http://portal.acm.org, the portal Web site of the ACM
(Association of Computing Machinery), which will display
in response that it has “found 2,028 of 863,039 citation
records, and will display 200 of them, all of them coming
from the journal.

[0015] The user’s process of creating an overview of this
journal can be outlined as:

[0016] reading citations, then identifying important terms
(keywords and keyphrases);

[0017] identifying related citations via important terms;
[0018] further identifying citations believed to be impor-
tant;

[0019] reading those citations and looping back to step 1 if

not satisfied with the results;
[0020]

[0021] The process is a “thorough” one but impractical
because of the sheer number of citations and terms in a jour-
nal. Indeed, the process is even more time consuming an
inefficient if the user makes use of other information in cita-
tions, e.g., references, authorship, etc.

[0022] Current search engines improve the efficiency of
topical searches to some degree through the use of Ranked
Information Retrieval (Ranked IR). In particular, they return
matched documents that are ranked with the hope that the
higher a document is ranked, the more relevant it is to the
user’s information need. Latent Semantic Indexing (L.SI) pro-
vides one method of ranking, that uses a Singular Value
Decomposition based approximate of a document-term
matrix. (see S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.
Landauer and R. Harshman, “Indexing by Latent Semantic
Analysis”, Journal of the American Society for Information
Science 41(6) (1990), pp. 391-407). Once this is done, a query
is compared to each document with this approximate matrix
instead of the original one. LSI’s authors explain the method’s
effectiveness with factor analysis, and other researchers have
given explanations such as multiple regression model (see B.
T. Bartell, G. W. Cottrell and R. K. Belew, “Latent Semantic
Indexing is an Optimal Special Case of Multidimensional
Scaling”, SIGIR Forum, 1992, pp. 161-167), and Bayesian
regression (see R. E. Story, “An Explanation of the Effective-
ness of Latent Semantic Indexing by Means of a Bayesian
Regression Model”, Information Processing & Management
32(3) (1996), pp. 329-344).

[0023] According to Kleinberg, if a page is considered to
have two qualities, one being “authoritativeness” and the
other “hubness”, then the basic formula for calculating them
is as follows: a page’s authoritativeness is the sum of the
hubness of all the pages pointing to it, and its hubness is the
sum of the authoritativeness of all the pages it points to. (see
J. Kleinberg, “Authoritative Sources in a Hyperlinked Envi-
ronment”, Proceedings of the 9th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, 1998, pp. 668-677. Also
appears as IBM Research Report RJ 10076, May 1997). Like
Google’s PageRank, this method uses only page-to-page rela-
tionship defined by hyperlinks, and is a form of link analysis.
The DiscoWeb project at Rutgers, circa 1999, implements a
sophisticated version of Kleinberg’s algorithm (see B. D.
Davison, A. Gerasoulis, K. Kleisouris, Y. Lu, H. Seo, W.

recording important terms and citations.
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Wang and B. Wu, “DiscoWeb: Applying Link Analysis to
Web Search”, Proc. Eighth International World Wide Web
Conference, 1999, pp. 148).

[0024] PageRank is a measure of a page’s quality whose
basic formula is as follows: A web page’s PageRank is the
sum of PageRanks of all pages linking to the page. PageRank
can be interpreted as the likelihood a page is visited by users,
and is an important supplement to exact matching. PageRank
is a form of link analysis which has become an important part
of' web search engine design.

[0025] The merit of the design of Ranked IR can be exam-
ined according to the “Probability Ranking Principle” which
states, “If a reference retrieval system’s response to each
request is a ranking of the documents in the collections in
order of decreasing probability of usefulness to the user who
submitted the request, where the probabilities are estimated
as accurately as possible on the basis of whatever data have
been made available to the system for this purpose, then the
overall effectiveness of the system to its users will be the best
that is obtainable on the basis of the data.” (see Rob77). Given
that measure, it is interesting to observe that the current sys-
tems do not make use of “whatever data have been made
available to the system” in performing topic searches. Thus,
there is still a significant need to make better use of available
data to improve the overall effectiveness of the system.

SUMMARY OF THE INVENTION

[0026] The present invention provides systems and meth-
ods for facilitating searches, in which document terms are
weighted as a function of prevalence in a data set, the docu-
ments are scored as a function of prevalence and weight of the
document terms contained therein, and then the documents
are ranked for a given search as a function of (a) their corre-
sponding document scores and (b) the closeness of the search
terms and the document terms. The weighting and document
scoring can advantageously be performed independently
from the ranking, to make fuller use of “whatever data have
been made available.”

[0027] In preferred embodiments, the data set from which
the document terms are drawn comprise the documents that
are being scored. By weighting and scoring iteratively, the
documents can be given greater weight as a function of their
being found in higher scored documents, and the documents
are can be given higher scores as a function of their including
higher weighted terms.

[0028] All three aspects of the process, weighting, scoring
and ranking, can be executed in an entirely automatic fashion.
In preferred embodiments, at least one of these steps, and
preferably all of the steps, are accomplished using matrices.
In particularly preferred embodiments the matrices are
manipulated by eigenvalues, and by comparing matrices
using dot products. It is also contemplated that some of these
aspects can be outsourced. For example, a search engine
utilizing the falling within the scope of some of the claims
herein might outsource the weighting and/or scoring aspects,
and merely perform the ranking aspect.

[0029] Itis also contemplated that subsets of the documents
can be identified with various collections, and each of the
collections can be assigned a matrix signature. The signatures
can then be compared against terms in the search query to
determine which of the subsets would be most useful for a
given search. For example, it may be that a collection of
journal article documents would have a signature that, from a
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mathematical perspective, would be likely to provide more
useful results than a collection of web pages or text books.
[0030] The inventive subject matter can alternatively be
viewed as comprising two distinct processes, (a) Doubly
Ranked Information Retrieval (“DRIR”) and (b) Area Search.
DRIR attempts to reveal the intrinsic structure of the infor-
mation space defined by a collection of documents. Its central
questions could be viewed as “what is this collection about as
awhole?”, “what documents and terms represent this field?”,
“what documents should I read first and, what terms should I
first grasp, in order to understand this field within a limited
amount of time?”. Area Search is RIR operating at the granu-
larity of collections instead of documents. Its central question
relates to a specific query, such as “what document collec-
tions (e.g., journals) are the most relevant to the query?”.
Additionally, for each collection, Area Search can provide
guidance to what terms and documents are the most important
ones, dependent on or independent of, the given user query.
Thus, if a conventional Web search can be called “Point
Search” because it returns individual documents (“points™),
then “Area Search” is so named because the results are docu-
ment collections (“areas”). DRIR returns both terms and
documents, thus named “Doubly” Ranked Information
Retrieval.

[0031] In terms of objects and advantages, preferred
embodiments of the inventive subject matter accomplish the
following:

[0032] Formulate the two related tasks in topical research
as the DRIR problem and the Area Search problem. Both are
new problems that the current generation of RIR does not
address and cannot directly transfer technology to;

[0033] Provide matrix based algorithms to determine
weighting of terms, scoring of documents, and ranking of
collections. Especially preferred embodiments utilize eigen-
vectors and singular vectors of the relevant matrices;

[0034] Provide metrics for comparing information retrieval
techniques, enabling repeatable and scalable experiments, as
well as the future development of optimization techniques;
[0035] Provide a mathematical foundation for analyzing
the algorithms and the metrics. A primary mathematical tool
is the matrix Singular Value Decomposition (SVD);

[0036] Inboth DRIR and Area Search, a document is rep-
resented as tuples of (term, weight. With Area Search, there is
additional information on the membership of the document in
a collection. No other information is available.

[0037] The tuples of (term, weight) are the results of pars-
ing and term-weighting, two tasks that are not central to
DRIR or Area Search. Parsing techniques can be applied from
linguistics, artificial intelligence, to name just a few fields.
Term weighting likewise can use any number of techniques.
Area Search starts off with given collections, and does not
concern itself with how such collections are created.

[0038] With Web search, a web page is represented as
tuples of (word, position_in_document), or sometimes
(word, position_in_document, weight) tuples. There is no
awareness of collections, only a giant set of individual parsed
web pages. Web search also stores information about pages in
addition to their words. For example, the number of links
pointing to a page, its last-modify time, etc.

[0039] Different internal data representations in DRIR/
Area Search vs Web search lead to different matching and
ranking algorithms. With DRIR and Area Search, matching is
the calculation of similarity between documents (a query can
be considered to be a document because it also is set of tuples
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of (term, weight)). This is what many RIR systems do, includ-
ing some early Web search engines. The essence of the com-
putation is making use of statistical information contained in
tuples of (term, weight). Ranking is achieved by similarity
scores.

[0040] With current Web search, matching is done by exact
matching of words and proximity search. Since only words
are known to Web search, typically the matching is so “exact”
that not even stemming is used, e.g. “flowers” and “flower”
return different results. Because the position of each word in
the document is known, proximity search is possible. (Prox-
imity search assigns a score depending on order and distance
of the matching between query words and document words.)
Typically statistical information of words in documents is not
used. Web search is not aware of phrases but only words,
although phrases in a user query does match up with those in
a document, but this is an artifact of exact matching and
proximity search.

[0041] Once exact matching and proximity search are done,
factors “external” to words are used to boost rank or to break
ties. Well known examples are (a) Google’s PageRank based
on hyperlinks, (b) CLEVER’s Hubness/Authoritativeness
based on hyper links, (c¢) AskJeeves/DirectHit’s use of click
feedback statistical information.

BRIEF DESCRIPTION OF THE DRAWING

[0042] FIG. 1is a matrix representation of document-term
weights for multiple documents.

[0043] FIG. 2 is a mathematical representation of iterated
steps.
[0044] FIG. 3 is a schematic of a scorer uncovering mutu-

ally enhancing relationships.

[0045] FIG. 4 is a sample results display of a solution to an
Area Search problem.

[0046] FIG. 5is a schematic of a random researcher model.

DETAILED DESCRIPTION
A. Doubly Ranked Information Retrieval (“DRIR™)

[0047] 1. Input to DRIR

[0048] DRIR preferably utilizes as its input a set of docu-
ments represented as tuples of (term, weight). There are two
steps before such tuples can be created: first, obtaining a
collection of documents, and second, performing parsing and
term-weighting on each document. These two steps prepare
the input to DRIR, and DRIR is not involved in these steps.
[0049] A document collection can be obtained in many
ways, for example, by querying a Web search engine, or by
querying a library information system. One could also use a
bibliographic source, where a citation is considered as a docu-
ment, and citations of papers from a journal or a conference
proceeding constitute a document collection.

[0050] Parsing is a process where terms (words and
phrases) are extracted from a document. Extracting words is
a straightforward job (at least in English), and all suitable
parsing techniques are contemplated.

[0051] 2. DRIR Problem Statement

[0052] The central problem statement of Doubly Ranked
Information Retrieval is: given a collection of M documents
containing T unique terms, where a document is tuples of
(term, weight), a term is either a word or a phrase, and a
weight is a non-negative number, find the r<<M most “rep-
resentative” documents as well as the r'<<T most representa-
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tive terms. Since both ranked documents and terms are
returned to users, this problem is called Doubly Ranked Infor-
mation Retrieval.

[0053] Note that in the problem statement there is no user
query. In our lexicon, obtaining the collection of documents is
a “search” problem, and a user query is needed, but finding
out what the collection “is about” is to “reveal”, to find prop-
erties “intrinsic” to the collection, therefore, it should be
independent of any queries.

[0054] 3. The Core Algorithm of DRIR

[0055] In preferred embodiments, the core algorithm of
DRIR computes a “signature”, or (term, score) pairs, of a
document collection. This is accomplished by representing
each document as (term, weight) pairs, and the entire collec-
tion of documents as a document-term weight matrix, where
rows correspond to documents, columns correspond to terms,
and an element is the weight of a term in a document. The
algorithm is preferably an iterative procedure on the matrix
that gives the primary left singular vector and the primary
right singular vector. (The singular vectors of a matrix play
the same role as the eigenvectors of a symmetric matrix.) The
components of the primary right singular vector are used as
scores of terms, and the scored terms are the signature of the
document collection. Similarly, the components of the pri-
mary left singular vector are used as scores of documents, the
result is a document score vector. Those high-scored terms
and documents are returned to the user as the most represen-
tative of the document collection. The signature as well as the
document score vector has a clear matrix analytical interpre-
tation: their cross product defines a rank-1 matrix that is
closest to the original matrix.

[0056] In both DRIR and Area Search (described below),
queries and documents are both expressed as vectors ofterms,
as in the vector space model of Information Retrieval. (see G.
Salton, Automatic Text Processing: The Transformation,
Analysis, and Retrieval of Information by Computer, Read-
ing, Mass., Addison-Wesley, 1988). The similarity between
two vectors is the dot product of the two vectors.

[0057] In FIG. 1, the tuples of all documents are put
together to obtain a document-term weight matrix, denoted as
B, where each row corresponds to a document, each column
to a term, and each element to the weight of a term in a
document. Following is a B matrix of M documents and T
terms:

WMl WM2 WMT WMT

[0058] where w,; is the weight of the j” term in the i”
document. All weights are non-negative real numbers.
[0059] A naive way of scoring documents is as follows:

Algorithm 1 A Naive Way of Scoring and Ranking Documents

1: forj< 1toMdo

2: add up elements in row i of matrix B.
3: use the sum as the score for document i.
4: end for

5: Rank the documents according to the scores.

May 14, 2009

[0060] Similarly a naive way of scoring terms is as follows:

Algorithm 2 A Naive way of Scoring and Ranking Terms

1: fori< 1toT do

2: add up elements in column j of matrix B.
3: use the sum as the score for term j.
4: end for

5: Rank terms according to their scores.

[0061] The document scoring algorithm is naive because it
ranks documents according to their document lengths when
an element in B is the weight of a term in a document. (Or the
number of unique terms, when an element in B is the binary
presence/absence of a term in a document.)

[0062] The term scoring algorithm is naive for a similar
reason: if a term appears in many documents with heavy
weights, then it has a high score. (However, this is not to say
the algorithms are of no merit at all. A very long document or
a document with many unique terms in many cases is a
“good” document. On the other hand, if a term does appear in
many documents, and it is not a stopword (a stopword is a
word that appears in a vocabulary so frequently that it has a
heavy weight but the weight is not useful in retrieval, e.g.,
“of,’, “and” in common English), then it is not unreasonable
to regard it as an important term.)

[0063] To improve the algorithms, we first obtain the scores
for documents using the naive algorithm, then use these docu-
ment scores in calculating term scores in the following way:
Given a term, instead of simply adding up its weights in all
documents, add up its weights weighted by document scores.
Once term scores are obtained, each document’s score is
updated by adding up its terms’ weights weighted by the
terms’ scores. Then term scores can be updated with the new
document scores, followed by document scores being
updated with even newer term scores, so on and so forth.
[0064] A preferred solution to Area Search (see below) is
built around DRIR’s signature computation. Area Search has
a set of document collections as input, and precomputes a
signature for each collection in the set. Once a user query is
received, Area Search finds the best matching collections for
the query by computing a similarity measure between the
query and each of the collection signatures.

[0065] Mathematically, we can call ? a signature of the
collection. Signature plays an important role in both DRIR
and Area Search, and finding a good signature of a collection
is a central task. Any arbitrary term-score vector can serve as
the signature. The difference is that they enjoy different math-
ematical properties, different procedural interpretations, and
different performances with respect to certain metrics.
[0066] 4. Iteration

[0067] Iteration of the DRIR algorithm is straightforward
following the assumptions that an important term is a term
that many important documents contain, and an important
document is a document that contains many important terms.
This observation when expressed in mathematics becomes

— — — r .
d<B-t; t <B"-d.Therefore the observation suggests an
iterative algorithm: start with equal score for each term
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[0068] #(0)—(1,1...1,1);

e g LD

FEORR A

[0069] Normalize ?(”) and E(")

[0070] and iterate the following steps (see also FIG. 2):
[0071] Given the document-term matrix BeR*>*, the itera-
tion produces a converging TeR™ and d R where t is

.
the term score vector and d the document score vector.
[0072] We also refer to a term score vector of a document
collection as the signature of the collection.

Algorithm 3 Scorer: An Iterative Procedure
for Scorings of Terms and Documents

s Initialized: T = (1,1,...,1 ), d = (1,1,....1,7)
: LOOP:

I T

:d<B7

: Normalize so that t t = 1, dd7=1

(if Tand converge then

Output T and H, exit.
:else
Go LOOP

OO0 N B W N

—

rend if

[0073] The convergence can also be shown by the follow-
ing equilibrium equations:

- - -
t=c;B'B t, tr"=1

d=c;BBTd, d dT-1
where ¢, and ¢, are constants.
[0074] These equations are similar to the definition of an

—
eigenvector, showing that t converges to the primary eigen-

vector of BBZ, and _d> converges to the primary eigenvector of
BBZ, as can be shown by standard Matrix Analysis theory.
(see G. H. Golub and C. F. Van Loan, Matrix Computations,
3rd ed., Baltimore, Johns Hopkins University Press, 1996).

[0075] In order to converge to the primary eigenvector,
however, the starting vector must have components in the
direction ofthe primary eigenvector, a requirement that is met

— —
by the above chosen initial values for t and d.

[0076] Since the value of the converged vectors does not
rely on initial conditions but only on the matrix itself, they
indeed help to represent an “intrinsic” aspect of the docu-
ment-term relationship defined by the matrix.

[0077] The Singular Value Decomposition (SVD) of a
matrix B, UZV’=B decomposes the matrix, where

are orthogonal matrices consisting of the left singular vectors

—
u ,;, and the right singular vectors

O,

g

= = — — —
ax=01= ...0=0,,,>0,,,=...=0=0,

respectively. Z=(0y, . .., 0,) where k is the rank of B. (See the
Appendix for a review of the matrix SVD.)
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[0078] The SVD of the matrix B is related to the eigenvec-
tors of B’B and BB” in the following way: the left singular

vectors ?i(B) of B are the same as the eigenvectors
Ti(BBT B), and the right singular vectors ;)n- (B) are the same
as the eigenvectors ?i(BT B). Thus, we could also develop an
interpretation of _t> and E based on the SVD of B.

— — —>—
[0079] Thecrossproductof t and d, d t Zisthe closest
rank-1 matrix to the document-term matrix by SVD. The
cross product can be interpreted as an “exposure matrix” of
how users are able to examine the displayed top ranked terms
and documents. Thus it could be said that the document and
term score vectors are optimal at “revealing” the document-
term matrix that represents the relationship between terms
and documents. With similar reasoning, the cross product of
the document score vector “reveals” the similarity relation-
ship among documents, and the term score vector does the
same for terms.

[0080] DRIR’s iterative procedure does at least two signifi-
cant things. First, it discovers a mutually reinforcing relation-
ship between terms and documents. When such a relationship
exists among terms and documents in a document collection,
high scored terms tend to occur in high scored documents,
and score updates help further increase these documents’
scores. Meanwhile, high scored documents tend to contain
high scored terms and further improve these terms’ scores
during updates.

[0081] Second, the iterative procedure calculates term-to-
term similarities and document-document similarities,
respectively, which is revealed by the convergence condition

— — — —
d=c,BB?d and t=cB”B t, where BB can be seen as a
similarity matrix of documents, and BB a similarity matrix
of terms. The similarity between two terms is based on their
co-occurrences in all documents, and two documents’ simi-
larity is based on the common terms they share.

[0082] At the end of the iterative procedure, a high scored
term thus indicates two things: (1) its weight distribution
aligns well with document scores: if two terms have the same
total weights, then the one ending up with a higher score has
higher weights in high scored documents, and lower weights
in low scored documents; (2) its similarity distribution aligns
well with term scores: a high scored term is more similar to
other high scored terms than to low scored terms.

[0083] Similarly, a high scored document has two features:
(1) the weight distribution of terms in it aligns well with term
scores: if two documents have the same total weights, then the
one with a higher score has higher weights for high scored
terms, and lower weights for low scored terms; (2) its simi-
larity distribution aligns well with document scores: a high
scored document is more similar to other high scored docu-
ments than to low scored documents.

B. Interpretation of DRIR Scores

[0084] 1. Two Meanings of High Scores

[0085] A high score for a term generally means two things:
(1) it has heavy weights in high-scored documents; (2) it is
more similar to other high-scored terms than low-scored
terms.

[0086] This can be shown by the equations of the iterative
procedure.
_t):c,BE) €8]
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[0087] or equivalently

Iy = Z bkjdj

page jhaxtermk

[0088] Thek” element of _t> is the score for term k, which

is the dot product of E and the k™ row of B. Therefore for
term k to have a large score, its weights in the n documents as
expressed by the k™ row of B, shall point to the similar

orientation (or align well with) the document score vector E
[0089] It helps term k to get a high score if it has heavy
weights in high-scored documents. On the other hand, it hurts
its score if the term has heavy weights in low-scored terms. Its
score is the highest if it has heavy weights in high-scored
documents, and light weights in low-scored documents, given
a fixed total of weights.

[0090] Similar analysis is applied to

— —
d=c,BTt

or equivalently,

die > b

page jhaxrerm;

[0091] Document d tends to have a high score if it contains
high-scored terms with heavy weights. Its score is hurt if it
contains low-scored terms with heavy weights. The score is
the highest if the document contains high-scored terms with
heavy weights and low-scored terms with light weights, given
a fixed total of weights.

T<BBT )
[0092] The product of BY and B is a TxT matrix that can be

seen as a similarity matrix of terms. The element (i,j) is the dot
product of the i row of BY, which is the same as the i” row of
B, and the j* column of B, and its value is a similarity measure
of term 1 and j based on these two terms’ weights in the M
documents.

[0093] Denote S=B”B as the term-term similarity matrix,
then the score of term k, namely the k” element of _t>, is the

—
dot product ofthek” row of Sand t . For term k, given a fixed
total amount of similarity, if its similarity vector, namely the
k” row of S points in a similar direction as the term score

—
vector t, then its score is large.

[0094] Inother words, the fact that term k is similar to other
high-scored terms helps its score. Its being similar to other
low-scored terms hurts its score. Its score is the highest if term
k is more similar to high-scored terms than to lower scored
ones, given a fixed total amount of similarities. This is in
accordance with a graph interpretation of eigenvectors. As
shown in the Appendix, the magnitudes of the components of
the primary eigenvector has the following interpretation. On
the graph defined by a square matrix, the number of walks of
length k, when k becomes large, between nodes (i,j) depends
on the product of the i and j** component of the primary
eigenvector.
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[0095] A similar analysis can be applied to
d<—BBTd
[0096] When document d is similar to other high scored

documents, its score tends to be high. If it is similar to other
low-scored documents that its score tends to be low. The
document’s score is the highest if it is more similar to high-
scored documents than to lower-scored ones, given a fixed
total amount of similarities.

[0097] 2. The Score Vectors Best Reveal the Document-
Term Matrix
[0098] According to the SVD, the cross product of the term

——
score vector and the document score vector, d t “are the best
rank-1 approximate to the original document-term matrix.
One way of understanding the impact of this statement is the
following thought experiment: Suppose a term’s score indi-
cates the frequency by which the term is queried. Also sup-
pose a document’s score indicates the amount of exposure it
has to users. Multiplying a term’s score and the document
score vector therefore gives the amount of document expo-
sure due to the term. An “exposure matrix” is constructed by
going through each term and multiplying its score and the
document score vector.

[0099] By SVD, we can show that the document exposure
matrix is the best rank-1 approximate to the document-term
weight matrix. As long as a term or a document is assigned a
score, which is a scalar value, the best score vectors are the
ones our procedure finds.

[0100] Therefore the term score vector and the document
vector are the optimal vectors in “revealing” the document-
term weight matrix which reflects the relationship between
terms and documents.

[0101] 3. Scorer Uncovers Mutually Enhancing Relation-
ships
[0102] In FIG. 3, a random surfer starts with term,. If he

lands on doc,, he has the choice of three terms: term, term,,
and termj,. Ifhe chooses, term,, then the pages to choose from
are doc,, doc, and doc,. The score of term, is determined by
the relationship between the terms and the documents.
[0103] Large-Large” Relationship. Suppose term, has a
large weight in doc,, then once the surfer is on doc,, there is
alarge chance for him to pick term,. term,, on the other hand,
happens to appear in doc,, doc,, and doc,,.

[0104] Ifitalso happens that among these three documents,
term, has the largest weight in doc,, then a “large-large”
mutually reinforcing relationship exists between term, and
doc,: once the surfer lands on doc,, there is a large chance to
pick term,, and once term, is picked, there is a large chance to
land on doc, once again.

[0105] Large-Small” Relationship. If term, is important in
doc, compared with other terms, but not important compared
with other documents, then the positive feedback is not as
strong as above: when the surfer is on doc,, he has a large
chance to pick term,, however, once term, is picked, there is
a larger chance to go off on doc; or doc,,.

[0106] Small-Large Relationship. If term, is not important
in doc, compared with other terms, but important compared
with other documents, then again the positive feedback is not
as strong: when the surfer is on doc,, he has a small chance to
pick term,, although once term, is picked there is a larger
chance to land on doc, again.

[0107] Small-Small” Relationship. Ifterm, is not important
in doc, compared with other terms, and not important com-



US 2009/0125498 Al

pared with other documents, then the relationship is still
mutually reinforced, but the result is term, that does not
benefit from doc,.
[0108] With the above analysis, only the “large-large” rela-
tionship helps the score for a term. If a term does contain
high-scored documents, and there are “large-large” relation-
ships, then the term also will be high-scored. Since the rein-
forcement is mutual, the argument applies also to documents,
namely, if a document contains high-scored terms and there
are “large-large” relationships, then the document will be
scored high.
[0109] Consider two extreme cases that illustrate how
mutually reinforcing relationship is at work.
[0110] The unit square matrix
[0111] With this special case, the number of documents
and the number of terms are the same, each document
contains exactly one unique word. Therefore between a
document and the word it contains, there is a large-large
mutual reinforcing relationship, with is the strongest
possible with this matrix.
[0112] A matrix whose elements are all the same
[0113] In this case, there is only a ‘flat’ relationship
between terms and documents, and the mutually rein-
forcing relationship is the weakest. The following algo-
rithm finds large-large reinforcing relationships.

Algorithm 4 Large-Large: Finding Large-large
Reinforcing Relationship

1: for each row i in the document-term matrix B do

2 find top ranked elements of the row

3: for each such element (i, j) do

4 if (i, j) is top ranked in column j then

5 output (i, j) as having large-large reinforcing

relationship
6: end if
7: end for
8: end for
[0114] To implement the algorithm with “real world” data,

both the inverted index and forward index are needed. The
inverted index is used when Line 2 is implemented, and the
forward index is used when Line 4 is implemented.

[0115] 4. A Markov Chain Analogy

[0116] Recall that BB is a document-document similarity

matrix, and that E, DRIR’s document score vector, is its
eigenvector. This leads to a Markov Chain analogy.

[0117] Suppose each row in BB is normalized so that its
first norm becomes 1 (i.e., each row’s elements add up to 1),
note also that all elements are non-negative. This new matrix
is the probability matrix of a Markov Chain.

[0118] This Markov Chain’s transition probabilities have
the following interpretation: a visitor to the i” state (i.e., the j*
document) transits to the document with a probability equal
to how similar the two documents are. The converged value of
each state (i.e, each document) indicates how many times the
document has been visited, or, how “popular” the document
is. While the result is not the same as the eigenvector of BB,
we suspect that they shall be strongly related.

[0119] For terms, the interpretation is similar.
C. Area Search
[0120] The central question of Area Search is that “given

multiple document collections and a user query, find the most
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relevant collections”. Further, for each collection, find a small
number of documents and terms for the user to further
research.

[0121] 1. Input to Area Search

[0122] With our current design, Area Search requires each
document be represented by tuples of (term, weight), the
same requirement by DRIR.

[0123] Area Search further requires a data source to contain
multiple collections, and without loss of generality, for each
document to belong to one and only one collection. In our
experiment, we use a bibliographic source, where journals
(and conference proceedings) are “natural” collections, and a
paper belongs to one journal (or conference proceeding).
[0124] Area Search starts with prepared document collec-
tions. It does not concern itself with how the collections are
created, nor how parsing and term-weighting are done.
[0125] 2. Problem Statement of Area Search

[0126] Given multiple document collections (e.g. jour-
nals), each collection consists of documents of tuples (term,
weight) and without loss of generality, a document belongs to
one and only one collection. Given a user query (i.c. a set of
weighted terms), find the most “relevant” n collections, and
for each collection, find the most “representative” r docu-
ments and r terms, where r,r* are small.

[0127] 3. Sample (n,r) Results Display

[0128] FIG. 4 shows a use case that is a straightforward
solution to the Area Search problem. A user submits a query
and is shown the following (n,r) Results Display:

[0129] With this design, given a query, n areas are returned,
ranked by an area’s similarity score with the query. For each
area, the similarity score, the name of the area (e.g., name of
a journal) and the signature of the area (i.e., terms sorted by
term-scores) are displayed. Within each area, r documents are
displayed. These r documents are considered worthwhile for
the user to further explore. For each document, its score, title,
and snippets are displayed, much like what a Web search
engine does. In all, n areas and nxr documents are displayed.
[0130] There are certainly many variations to this basic
scheme. For example, r could be dependent on an area’s rank,
so that the top 1 area displays more documents than, say, the
top 10 area.

D. A Solution Based on Collection Signatures

[0131] To serve the general goal of Area Search, there are
many possible algorithms. Our proposed algorithm is effec-
tive and low in computational requirements. At the center of
the solution is the calculation of the signature for each col-
lection.

[0132] The algorithm is as follows:

[0133] Pre-computation:

[0134] Prepare a signature for each collection;

[0135] Assign as score to each document its similarity with
the signature;

[0136] Serving queries:

[0137] Given a query, compute the similarity between the

query and each of the collection signatures;

[0138] Return the following:

[0139] (i) The n collections with the highest similarity
scores;

[0140] (ii) for each collection, the r documents and r’ key-

words as pre-computed.
[0141] The dot product of two vectors is used as a measure
of the similarity of the vectors.
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[0142] With this proposed solution, the areas to be returned
are dependent on the user query. However, within each area,
the returned documents and terms are pre-computed and are
independent of the user query. Our solution emphasizes the
fact that what an area (e.g., a journal) is about as a whole is
“intrinsic” to the area, and thus should not be dependent on a
user query. Having stated that, we acknowledge that it is also
reasonable to make the returned documents and terms depen-
dent on the user query, with the semantics of “giving the user
those most relevant to the query” from a collection.

[0143] With our solution, the performance of an Area
Search system is entirely dependent on how the signatures are
computed, or as we call it the “signature scheme”. DRIR is
compared with other signature schemes in our theoretical
analysis and experiments.

E. Metrics

[0144] For any Information Retrieval system the ultimate
evaluation is a carefully designed and executed user study,
where each human evaluator is asked to make a judgment call
on the returned results. In such a study of DRIR, the evaluator
would be asked to assign a value of “representativeness” of
the returned terms and documents. With Area Search, the
evaluator would judge how relevant the returned areas are to
a user query, and for each area, how important the returned
terms and documents are, in relation to the user query, or
alternatively independent of the query.

[0145] Our Representativeness Error measures how repre-
sentative the DRIR results are. Via Singular Value Decompo-
sition we have shown that DRIR’s signature possesses theo-
retical optimality with this metric. Further we have developed
a user-based formulation of the metric which takes into con-
sideration how much attention users pay to displayed results
on computer screens. Further, Representativeness Error is
parameterized by r, where r is the number of top documents
returned to a user.

[0146] To evaluate Area Search, we need first to solve the
issue of getting a large number of reasonable user queries, and
second to judge the relevance between a user query and a
document collection’s signature. We solve both by taking
advantage of one objective fact: a document belongs to one
and only one collection. This is certainly true for citations and
journals, and it can be set so in artificial data. Taking advan-
tage of this fact, we use each document as a user query. This
way a rich set of user queries is obtained, and the relevance
value is derived from the membership of a document in a
collection.

[0147] The returned results of Area Search are parameter-
ized by n and r, where n is the number of areas returned, and
r the number of documents returned for each area. (In our
discussions, “area” and “collection” are used interchange-
ably.)

[0148] Consider the situation where a document is used as
a query, and an Area Search system returns the (n,r) results. If
the document (serving as a query) is among the nr documents
returned, then we say there is a hit. Repeat this for all docu-
ments, and add up all hits and we obtain the Hits metric,
which is parameterized by n and r. Hits is reminiscent of
“recall” (the number of returned relevant results divided by
the total number of relevant results) in Information Retrieval,
but it has a much more complex behavior due to the relation-
ship among collections.

[0149] Hits helps to measure only one aspect of the perfor-
mance of a signature. When the “true” collection that a docu-
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ment belongs to is not returned, but collections that are very
similar to its “true” one are, Hits does not count them. How-
ever from the user’s point of view, these collections might
well be relevant enough. We introduce the metric Weighted-
Similarity which captures this phenomenon by adding up the
similarities between the query and its top matching collec-
tions, each weighted by a collection’s similarity with the true
collection. Again it is parameterized by n and r. Weighted-
Similarity is reminiscent of “precision” (the number of
returned relevant results divided by the total number of
returned results), but just like Hits vs recall, it has a complex
behavior due to the relationship among collections.

[0150] A metric of Information Retrieval should also con-
sider the limited amount of real estate at the human-machine
interface because a result that users do not see will not make
a difference. In all the three metrics, the “region of practical
interest” is defined by small n and small r.

[0151]

[0152] Our Representativeness Error Metric measures how
“representative” a set of documents are given a signature of
the document collection. We introduce a metric, the “Repre-
sentativeness Error”, which measures how “representative”
the terms in the signature and the top ranked documents are of
a document collection. It does so by measuring the error
between the signature and the documents. In addition, by
recognizing how users react to top ranked results, we propose
“Visibility Representativeness Error”, a variation to the basic
formulation, that considered how “visible” each displayed
result is to users.

[0153] Denote as usual B the MxT document-term matrix.
A signature is the vector

1. The Representativeness Error Metric

[0154] where T is the total number of terms (or columns of
B) is a vector of all the terms, and each component is non-
negative. (Equivalently a signature can be expressed as tuples
of (term, score), where scores are non-negative.)

[0155] Note any vector of the terms could be used as a
signature, for example, a vector of all ones: [1, ..., 1]. Thus
it is necessary to find ways of measuring how good a signature
is. We start by understanding how a signature is used.

[0156] Once wehavea signature ?, it will be used to obtain
the scores of the M documents as follows. Given the i

—
document (which we represent as r ,, the i row of B), its
score d, is calculated as

[0157] the dot product between ?i and the signature. (The
dot product of two vectors is often used as a similarity mea-
sure between two vectors.) Written in vector form, the scores
of all the M documents is what we define as the document-
score vector:

d-BTt

[0158] All elements in E are also non-negative because all

—
elements in t and B are non-negative.

[0159] The top r documents are those r documents whose

—
scores are the highest, i.e., whose components in d are the
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largest. Similarly, the top r* terms refer to those r* terms

whose scores are the highest, i.e., whose components in ? are
the largest.

[0160] Intuitively, a signature is the most representative of
its collection when it is closest to all documents. Since a
signature is a vector of terms, just like a document, the close-
ness can be measured by errors between the signature and
each of the documents in vector space. When a signature
“works well”, it should follows that

[0161] The error is small.

[0162] The signature is similar to the top rows. When the
signature is similar to the top rows, it is close to the corre-
sponding top ranked documents, which means it is near if not
at the center of these documents in the vector space, and the
signature can be said of being representative of the top ranked
documents. This is desirable since the top ranked documents
are what the users will see.

[0163] Our metric Representativeness Error measures this

-
closeness. For a particular document whose row is r , and
whose score d,, the Representativeness Error between the

—
document and the signature t is defined as
S(ry-dit)’

[0164] We add these errors together for all M documents
and get the total error, RepErr(M)

2

no— 41
RepErr(M) =
r,T,; - dM;> r
[0165] which is an equivalent way of writing

=
RepEre(M)=|B- d t I|7

[0166] where “F” denotes the Frobenius form, which is
widely used in association to the Root Mean Square measure
in communication theory and other fields.

[0167] The meaning of the item is d,? illustrated here.
First, the document score di:?~?, is the product of (a) the
length of the projection of ? onto _t> and (b) the length of ?
In this case, the length of ? is 1 by its definition. Thus dl:_t>

— — —
is t scaled by the length projection of r , onto t .

[0168] 2. The DRIR Signature is Optimal for RepErr(M)
[0169] We claim that the DRIR signature is optimal RepErr

(M) forbecause with DRIR, Eioi; ,and ?:? 1»and sothe

error becomes ||B—01;1;11]|F2, which by Singular Value
Decomposition equals X,0,? where k is the rank of the matrix
in question. This is the minimum value for all possible
‘deR™" and t "eR7 vectors.

[0170] 3. Error Introduced by B,

[0171] We further analyze the error cause B, which is the
primary component of B in SVD.

[0172] Given a query which we denote by ;:(t1 cost),
where t, is a weight on the i” term, what’s the difference
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between its similarity with B and its similarity with B,? We

define this error as ||;(B—B1 ||z where ‘F” is the Frobenius
norm of a matrix.

[0173] We give upper- and lower-bounds of this error.
[0174] For any mxn matrix A, it is known that

4= )4 ]= el 4112

[0175] Also, given two matrices, A and B, it is known for
the 2-norm,

4Bl =4l,I1B]

-
[0176] Further, for any vector E =0,

sl _

mi. =
=
I

[0177]
[0178]

where o, is the largest singular value for matrix A.
Thus we have a lower bound,

[ —
ool g 1I=l g B=BI,=1 g (B-B))l~

[0179] and an upper bound,

— — —
| ¢ B-Blz=#] ¢ B-B L=l ¢ |05

[0180] 4. RepErr(r)
[0181] What is of practical interest is the error introduced
by the top r documents, denoted as RepErr(r):

r - dr
RepErr(r) =
7, = a1l
[0182] wherer, . .. r* are the highest scored documents.

RepErr(r) is of practical interest because users see only the
top r documents that are displayed at the human-machine
interface.

[0183] Further, not all terms are shown to users but only the
top r* Thus we amend the metric to reflect that, namely, we
introduce RepErr(r,r?):

no- dl?,
RepErr(r, r') =
PR
[0184] wherer, ...r,are thehighestscored documents, and

?contains the highest scored terms.

[0185] It is not trivial to show the theoretical optimality of
RepErr(r) and RepErr(r,r?). Instead, we demonstrate with
experiments that DRIR indeed does better than other signa-
tures. We also discuss a sufficient condition for small errors in
the following.

[0186] 5. A Sufficient Condition for Low RepFErr(r)

[0187] For DRIR, the is RepErr is | B-B, ||

-
[0188] When written in rows, the i” row becomes X, o,
||z- Suppose these rows are ranked by document score o,u.
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[0189] Considerthe top rranked rows (documents), namely
U, Z...2u...2u By inspecting Z||ou||, i=1, . .. r, it is
recognized that the following are sufficient conditions for the
top r to have small errors:

[0190] the absolute values of u are small, i=1, . . ., r, and,
[0191] o0,>>0,= ... 0, where k is the rank of matrix B.
[0192] 6. Visibility RepErr: A User-based Formulation
[0193] Itis a common observation that users pay attention

only to top results. A recent study by search marketing firms
Enquiro and Did-it and eye tracking firm Eyetools confirmed
this observation. (see Eyetools, Inc., “Eyetools, Enquiro, and
Did-it uncover Search’s Golden Triangle” 2005. http://eye-
tools.com/inpage/research_google_eyetracking_heatmap.
htm). The eye tracking study found that 100% of the 50
participants in the study viewed the top 3 results returned by
Google, 85% of them viewed the Rank 4 result, progressively
fewer looked at results down the rank, and only 20% of them
viewed the Rank 10 result. The percentages are listed in Table
1.

TABLE 1

Visibility of Rankings

Rank 1 100%
Rank 2 100%
Rank 3 100%
Rank 4 85%
Rank 5 60%
Rank 6 50%
Rank 7 50%
Rank 8 30%
Rank 9 30%
Rank 10 20%

[0194] This tells us that at the Results Display interface, the
score of a document does not directly impact user’s experi-
ence. Rather, what matters is its rank, or more accurately, the
useraE™s attention as a function of the rank. Namely, if a
document is displayed as number one, it does not matter
whether it scores 0.9 or 0.5, the document always receives
100% attention from users (namely all users look at it).
[0195] We now develop a user-oriented formulation for
Representative Error. In the formulations discussed earlier,
the difference of a document and the signature is expressed
as:

B(ry-d)

where d, is the score of the document.

[0196] Using the results from the study, we replace docu-
ment scores with “visibility scores™ of displayed results,
namely Visibility Representativeness Error.

Visibility RepErr =

5 -
Flo = Vielllg

where only the top 10 documents are considered (since a
typical results display interface shows 10 results), and (u,, . .
., u;,,) are “visibility scores” for each rank.

[0197] The visibility scores that we used are derived from
studying user’s reaction to Web search results. This is not
ideal for DRIR to use since DRIR is applied to document
collections thus in real world applications, most likely
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DRIR’s data sources are of meta data or structured data, (For
example in our experiments, we use a bibliographic source)
not unstructured Web pages. We chose to use these visibility
scores since that data was readily available in the literature. In
the future, we intend to use more appropriate user visibility
scores.

[0198] 7. Metrics: Hits(n,r) and WeightedSimilarity(n,r)
[0199] To evaluate the performance of an Area Search sys-
tem, we again have the choice of deploying human evaluators
and using precision and recall as the metrics.

[0200] However, since by definition Area Search deals with
multiple areas (hundreds or even thousands), each of which
having hundreds if not thousands documents, the amount of
evaluation work is large. Also many of the areas involve
specialized knowledge, which denies the use of “common”
human evaluators.

[0201] We thus propose two metrics that can be automati-
cally computed. An additional benefit of using the metrics is
that they can also be theoretically analyzed.

[0202] A metric for Area Search shall have two features.
First, it shall solve the issue of user queries. The issue arises
because on one hand, the performance of Area Search is
dependent on user queries, but on the other hand, there is no
way to know in advance what the user queries are. The second
feature is that a metric should take into consideration the
limitation at the human-machine interface. Since Area Search
uses the (n,r) Results Display, a metric that is parameterized
by n and r can model the limited amount of real estate at the
interface by setting n and r to small values.

[0203] 8. Hits(n,r)

[0204] The metric Hits(n,r) is defined as follows:

[0205] Givennandr;

[0206] Use each document as a query, and get the (n,r)

results from the Area Search system;

[0207] if'the document is among the documents, count this
as a hit.

[0208] Add up all hits to obtain the value of Hits(n,r).
[0209] The metric is parameterized by n and r, and uses

documents as queries. A hit means two things. First, the area
to which the document belongs has been returned. Second,
this document is ranked within top r in this area. The metric
takes advantage of the objective fact that a document belongs
to one and only one area.

[0210] Hits(n,r) parallels to recall of traditional Informa-
tion Retrieval but with distinctions. With recall, a set of que-
ries has been prepared, and each (document, query) pair is
assigned a relevance value by a human evaluator. Hits takes a
document and uses it as a query, and the “relevance” between
the “query” and a document is whether the document is the
query or not.

[0211] The behavior of Hits is more complex that that of
recall. Consider under what conditions a “miss” happens. A
miss happens in two cases. First, the document’s own area
does not show up in the top n. Second, when its area is indeed
returned, the document is ranked below r within the area.
These conditions lead to interesting behavior. For example, a
Byzantine system can always manage to give a wrong area as
long as n=N where N is the total number of areas, making
Hits always equal to 0. However, once n=N, the real area for
a document is always returned, and Hits is always the maxi-
mum.

[0212] The region of practical interest, in light of the lim-
ited real estate at human-computer interface, is where both n
and r are small.
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[0213] By theoretical analysis, we obtained sufficient con-
ditions where Hits(n,r) does well for DRIR. The predicted
behavior was shown through experiments on artificial data.
[0214] We also experimented on real data, which showed
that DRIR does better in Hits(n,r) than other signature
schemes when both n,r are small.

[0215] 9. WeightedSimilarity(n)

[0216] Sometimes the system does not find the arca where
a document belongs but a very similar area. Hits does not
consider this situation. However from the user’s point of view,
a very similar area might well be as useful as the real one.
Thus we developed a WeightedSimilarity(n) metric to assess
the quality of the n returned areas for a given query. It is
obtained as follows: for each document, use it as a query

denoted as ; Suppose the document belongs to Area,,,,;. Get
from the Area Search system the top n areas for the document,
and calculate the “weighted similarity” between the query
and the n areas:

[0217] S

[0218] where each item is the similarity between the query

; and a returned area Area,, weighted by the similarity
between Area, and Area,, ;. An area is represented by its
signature which is a vector on terms. Similarity between two
vectors is the dot product of the two.

[0219] Add up the value for all documents to obtain the
WeightedSimilarity(n) for the collection of M documents:

2,5, "sim(g s Areasim(Area, Ares,, )

[0220] WeightedSimilarity(n) parallels to precision of tra-
ditional Information Retrieval. With precision, the ratio
between the number of relevant results and the number of
displayed results indicates how many top slots are occupied
by good results. Just as with recall, it requires pre-defined user
queries, as well as human judgment of the relevance between
each (query, document) pair. With WeightedSimilarity(n), the
weighted similarity between a document and an area within
the top n returned areas plays the role of relevance between a
query and a document, and queries are the documents them-
selves.

[0221] WeightedSimilarity(n) is further parameterized as
WeightedSimilarity(n,r), where r indicates that only docu-
ments ranked in top r with their own areas are included in the
summation. The (n,r) parameters correspond to the (n,r)
Results Display. Again, the region of practical interest is
where both n,r are small, since a document within this region
is more likely to be representative of its collection.

[0222] In our experiments, we found a behavior similar to
that of Hits(n,r), that DRIR does better than other signature
schemes when both (n,r) are small.

F. Experiments

[0223] The way signatures are computed lies at the core of
both DRIR and Area Search. Once signatures are computed,
each document’s score is simply the dot product between its
weight vector and the signature. And in Area search, a col-
lection’s relevance to a query is the dot product between the
query and the signature. Therefore evaluating DRIR and Area
Search is evaluating the quality of signatures.

[0224] The goal of the experiments is to evaluate DRIR
against two other signature schemes on the three proposed
metrics, Representativeness Error for DRIR, and Hits, and
WeightedSimilarity for Area Search. We used a bibliographic
source as real data to experiment on. We also conducted
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experiments on artificial data with a secondary goal of
observing the interactions between signature, characteristics
of data, and performance of metrics. These experiments help
us to confirm our theoretical predictions on the metrics, and to
gain understanding on how to simulate real data.

[0225] We obtained theoretical results on the three metrics.
However, the information landscape for an Information
Retrieval system is inherently so complex that theoretical
results cannot adequately describe it. We thus conducted
experiments on both artificial and real data, with special
attention to performance in the region of practical interest
(small n and small r). Experimenting on artificial data allowed
us to test the theoretical results we obtained and gain insight
into modeling of real data. Experimenting on real data, on the
other hand, helped to demonstrate possible applications of
DRIR and Area Search.

[0226] The generation of the artificial data was guided by
our theoretical analysis of the algorithms and the metrics.
Generation algorithms were designed for creating individual
document-term weight matrices, as well as multiple matrices
with controlled overlapping. Via theory, the performance of
the three metrics was linked to parameters with which data are
generated, and the experiments confirmed these linkages.
These designs and experiments provided guidance to under-
standing the real data.

[0227] Our experiments on real data were conducted on
more than 20,000 citations downloaded from ACM’s portal
web site. The way the citations were gathered ensures that
most of the citations are in the general field of Computer
Science. Two competing signature computation schemes
were compared against DRIR, and the experiments showed
that DRIR does better in the region of practical interest in
different experimental settings.

[0228] Both kinds of experiments helped to show the per-
formance of DRIR in comparison to other signature schemes.
With the three metrics, over a number of different settings, it
was shown that DRIR does better when both n,r are small,
which is the region of practical interest.

[0229] 1. Artificial Data

[0230] There are practically anunlimited number of param-
eters for generating artificial data. With the guidance of our
theoretical analysis, we decided upon a number of “knobs”,
namely tunable parameters, to be used. Combinations of
these parameters were iterated through and data were col-
lected on (a) the statistical characteristics of each data set, and
(b) performance of the three metrics. The results’ relationship
with the tunable parameters are detected and discussed.
[0231] The experiments confirm several of our theoretical
predictions. They also provide building blocks for simulating
the real data.

[0232] 2. Real Data

[0233] Weselected a bibliographic source as the real datato
experiment on. Such a source is used because

[0234] By using the index terms of each citation, parsing is
bypassed;
[0235] Journals and conference proceedings are “naturally

occurring” collections;

[0236] The fact that a paper belongs to only one collection
can be utilized.
[0237] We downloaded 20,000 citations from ACM’s “The

Guide to Computing Literature” site, starting by querying the
site with researchers from ten computer science departments.
Three term-weighting schemes were devised by us to deal
with hierarchically arranged index terms. After term-weight-
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ing, the document-term B matrices for each journal/confer-
ence proceedings was obtained.

[0238] Our results show that DRIR does better than other
signature schemes for Hits(n,r) and WeightedSimilarity(n,r)
when (n,r) are both small.

G. The “Random Researcher Model” for Topical
Research

[0239] We propose a “random researcher model” that cap-
tures much of the essence of topical research. As shown in
FIG. 5, a researcher conducts a topical research with the help
of a generic search engine. Given a term, the engine finds all
documents that contain the term and displays one document
according to a probability proportional to the weight of the
term in it; namely if the term has a heavy weight in a docu-
ment, then the document has a high chance to be displayed.
[0240] The researcher enters the following loop: Step 1,
submit a term to the generic search engine; Step 2, read the
returned document and pick a term in the document according
to a probability proportional to the term’s weight in the docu-
ment; and loop back to Step 1. During the loop a score is
updated for each page and term as follows: each time the
researcher reads a page a point is added to its score, and each
time a term is picked by the researcher a point is added to its
score.
[0241] The scores of documents and terms indicate how
often each document and term is exposed to the researcher.
The more exposure a document or term receives, the higher its
score thus its importance. Since both the engine and the
research behave according to elements in the document-term
matrix, the importance of the terms and documents is entirely
decided by the document-term matrix.
[0242] It should be apparent to those skilled in the art that
many more modifications besides those already described are
possible without departing from the inventive concepts
herein. Moreover, in interpreting the disclosure, all terms
should be interpreted in the broadest possible manner consis-
tent with the context. In particular, the terms “comprises” and
“comprising” should be interpreted as referring to elements,
components, or steps in a non-exclusive manner, indicating
that the referenced elements, components, or steps could be
present, or utilized, or combined with other elements, com-
ponents, or steps that are not expressly referenced. Where the
specification claims refers to at least one of something
selected from the group consisting of A, B, C . . . and N, the
text should be interpreted as requiring only one element from
the group, not A plus N, or B plus N, etc.
What is claimed is:
1. A method of facilitating a search that employs a search
term, comprising:
determining variable weights for each of a plurality of
document terms as a function of prevalence of the terms
in a data set;
calculating document scores for a plurality of documents
as a function of prevalence and weight of document
terms contained therein; and
ranking each of the first and second documents as a func-
tion of (a) its corresponding document scores and (b) the
closeness of the search terms and the document terms
contained therein.
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2. The method of claim 1, wherein the data set comprises
the plurality of documents.

3. The method of claim 1, further comprising iterating the
steps of determining and calculating.

4. The method of claim 1, wherein the plurality of docu-
ments includes Internet web pages.

5. The method of claim 1, wherein the plurality of docu-
ments includes journal articles.

6. The method of claim 1, further comprising using a
matrix to store the weights for at least some of the document
terms found within the first document.

7. The method of claim 6, further comprising using the
matrix to store the weights for at least some of the document
terms found within the second document.

8. The method of claim 6, further comprising computing an
eigenvector of the matrix.

9. The method of claim 6, further comprising using a
matrix dot product as a measure of the similarity of the matrix
with a second matrix.

10. The method of claim 6, further comprising outsourcing
at least one of the steps of determining, calculating, and
ranking.

11. The method of claim 1, further comprising determining
a first signature for a first collection containing the first and
second documents, based upon their respective document
scores.

12. The method of claim 11, wherein the step of ranking
further comprises ranking the first and second documents
along with additional documents in the first collection, based
upon their respective document scores.

13. The method of claim 11, further comprising determin-
ing a second signature for a second collection containing third
and fourth documents, based upon their respective document
scores.

14. The method of claim 13, wherein the first and second
collections are mutually exclusive.

15. The method of claim 13, further comprising using the
first and second signatures to determine importance of the
first and second collections relative to the search terms.

16. A method of ranking first and second collections of
documents relative to a search term, comprising;
calculating a first signature for the first collection of docu-
ments and a second signature for the second collection
of documents; and
calculating closeness of the first and second signatures to
the search term.

17. The method of claim 16 wherein the step of calculating
the first signature comprises weighting terms in the first col-
lection using an iterative process.

18. The method of claim 16 wherein the step of calculating
the first signature comprises calculating the first signature
independently of the search term.

19. The method of claim 16 wherein the step of calculating
the first signature comprises calculating relative importance
of terms included in the first collection.
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